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Problem 1: Thermal Expansion of a One-Dimensional Crystal via Anharmonicities
Consider a simple one-dimensional crystal lattice with nearest-neighbour interaction potential

ϕ(y) =
K

2
y2 − gy3, (1.1)

where y = xi+1−xi− a0 and g is small; a is the lattice spacing. For g = 0 and at zero external pressure
the lattice spacing a = a0 and the probability distribution of y due to zero-point thermal phonons is
Gaußian with root-mean-square σ(T ) at temperature T ; we are to treat σ(T ) as a known function.

By perturbatively adding the effects of the cubic anharmonicity, we are to determine the equilibrium
lattice spacing a to leading order in g. We should use this to express the thermal expansion coefficient
in terms of the specific heat at g = 0 and other parameters in the problem. We should estimate the
magnitude of g for which this approximation is valid.

A lot of physics intuition leads us to expect that to leading order in g the equilibrium
anharmonic lattice can be viewed as a harmonic system with modified equilibrium
displacements1. The heuristic picture we have in mind is this: if g is turned on
slowly, the lattice spacing may change reaching some new equilibrium value; but the
fluctuations about this new lattice spacing should still be roughly Gaußian—and the
widths of the distributions shouldn’t know anything about g to leading order2.

Because the harmonic system amounts to a collection of N independent oscillators (each
with the same Gaußian normal distribution) the entropy of the system is simply the
sum of the entropies of each. This has nothing to do with the lattice spacing, so if we
are allowed to view the perturbed system as identical to the original system with an
‘expanded’ lattice spacing, then the entropy should not be changed. We expect this
argument to hold to leading order in g. This implies that the entropy is independent
of g to leading order—and therefore minimization of the free energy is equivalent to
minimization of the energy u.

Using our reasoning above, we see that the expectation value of the total energy per
lattice site u should therefore be given by3

〈u〉 = u0 +
1

σ(T )
√

2π

∞∫

−∞
dy exp

{
− (y − δa)2

2σ2(T )

}(
K

2
y2 − gy3

)
+O(g2), (1.2)

= u0 +
K

2
σ2(T )− 3gσ2(T )δa +

K

2
δa2 − gδa3 +O(g2). (1.3)

Notice that the expression above makes sense when g = 0: then equation (1.3) reads
〈u〉 = u0 + K

2 σ2 = u0 + K
2 〈y2〉 when the displacement is unchanged, i.e. δa = 0—we

will show presently that g = 0 implies δa = 0.
To find the modified lattice spacing for non-vanishing g, we should minimize the total

energy (1.3) with respect to δa. This can be done by inspection. We find

Kδa− 3gδa2 − 3gσ2(T ) = 0, (1.4)

which implies that

δa =
3g

K

(
σ2 + δa2

)
=

3g

K
σ2 +O(g2). (1.5)

To check consistency, we observe that g = 0 implies δa vanishes.

1If we think in terms of Feynman diagrams, then it takes one factor of g to communicate the anharmonicity between
neighbouring lattice sites, but at least two powers of g to communicate anharmonicity between two fluctuations; so to
leading order in g, we expect the distributions to be offset, but otherwise unchanged.

2Note added in revisions: this is obvious from the fact that we’re considering an adiabatic process.
3The ‘higher order’ terms in equation (1.2) arise from, e.g., non-Gaußianity in the structure of the fluctuations past

leading order.
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The thermal expansion coefficient is then seen to be4

α ≡ 1
a0 + δa

d(δa)
dT

=
1
a0

6g

K
σ

dσ

dT
+O(g2). (1.6)

Setting g → 0 in expression (1.3) we find the original thermal heat capacity to be

cv =
2
a0

Kσ
dσ

dT
. (1.7)

Therefore, we can write the thermal expansion coefficient α as

∴ α =
3g

K2
cv +O(g2). (1.8)

‘óπερ ’έδει πoι�ησαι

The leading order approximation in g is valid only when the anharmonic contribution
to the potential is small compared to the harmonic contribution. Inserting our ex-
pression for δa into equation (1.3) we find that our condition is5

3g σ2 δa + g δa3 <
K

2
(σ2 + δa2);

=⇒ 3
2
g δa σ2 <

K

2
σ2;

=⇒ g <
K2

9gσ2
;

and therefore our approximations are appropriate as long as

|g| < K

3σ
. (1.9)

Problem 2: Electrons in Two-Dimensions
Consider a two-dimensional gas of electrons (confined to, say, the xy-plane) subjected to a uniform

magnetic field B in the positive ẑ direction and a uniform electric field ~E = Ex̂, giving rise to a two-
dimensional potential U(x, y) = eEx.6 We may assume for the sake of convenience that the system is of
large length L in the ŷ-direction so that we may impose periodic boundary conditions in that direction.

a. We are to find all the single-electron eigenstates and their corresponding eigenenergies.
From our experience working with gauge fields, we know that to upgrade the Schrödinger

equation for a free electron to one in a non-trivial gauge potential Aµ = (ϕ,− ~A)7,8,
all we must do is upgrade ∂µ 7→ ∂µ + i q

~Aµ everywhere. In our setup, the scalar
potential ϕ(x, y) = −Ex and we will choose the Lorentz gauge for the magnetic field
so ~A = Bxŷ. This means that

Ĥψ = i~∂tψ =
1

2m

(
(−i~∂x)2 + (−i~∂y)2

)
ψ

7→ i~
(
∂t − i

e

~
(−Ex)

)
ψ =

1
2m

[
(−i~∂x)2 +

(
−i~

(
∂y + i

e

~
Bx

))2
]

ψ,

∴ i~∂tψ = Ĥψ =
1

2m

[−~2∂2
x − ~2∂2

y − 2i~eBx∂y + e2B2x2
]
ψ + eExψ. (2.a.1)

4Notice that 1
a0+δa

= 1
a0

+O(δa)—and that the part of O(δa) is over order g and so can be neglected when multiplying

terms of order g.
5A quicker calculation, using equation (1.1), would give g < K√

6σ
which is a bit stronger than what we obtain above—but

the difference is not very substantive.
6To avoid confusion—which is not easy to do in this problem—e will always be take to be the absolute value of the

electron’s charge. This ensures that the E-field points in the positive x-direction, but it forces us to systematically alter
the equations copied in lecture (where ‘e’ was often used to denote the charge q).

7We are going to set c = 1 to avoid lots of confusion. If at the end units are desired, there is always a unique way of
adding c to the expressions.

8However, I am quite sure that the spatial components of Aµ come with a minus sign: this important fact comes about
via the metric. Many textbooks disappointingly do not clarify how all these signs work out. (Indeed, it is a common
practice of field theory textbooks to define the gauge covariant derivative of QED oppositely to all other gauge fields so
that a familiar minus sign is present for the electron.)
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We may suppose that ψ is separable—specifically, of the form ψ(x, y) = ϕ̃(x)e−iky. Pe-
riodic boundary conditions of course require that k ≡ kn = 2πn

L for some nonnegative
integer n9. Inserting this into the Schrödinger equation (2.a.1), we find that

Ĥϕ(x) =
[
− ~

2

2m
∂2

x +
~2

2m
k2

n −
~kneBx

m
+

e2

2m
B2x2 + eEx

]
ϕ̃(x). (2.a.2)

To make this conceptually easier, we should try as hard as we can to simplify the
structure. Although not apparently obvious, it may prove useful to define the cy-
clotron frequency ωc and magnetic length `B :

ωc ≡ eB

m
and `2B ≡ ~

eB
. (2.a.3)

Making use of these constants, we see that equation (2.a.2) becomes

Ĥϕ =
[
− ~

2

2m
∂2

x +
mω2

c

2
`4Bk2

n −mω2
c `2Bknx +

mω2
c

2
x2 + eEx

]
ϕ̃(x),

=

[
− ~

2

2m
∂2

x +
mω2

c

2

(
x− kn`2B +

E

Bωc

)2

+ eE

(
kn`2B −

E

Bωc

)
+

m

2

(
E

B

)2
]

ϕ̃(x),

=

[
− ~

2

2m
∂2

x +
mω2

c

2
(x− xn)2 + eExn +

m

2

(
E

B

)2
]

ϕ̃(x), (2.a.4)

where in the last line we have introduced

xn ≡ kn`2B −
E

Bωc
.

Notice that equation (2.a.4) is the Schrödinger equation for simple harmonic oscillator
with a displaced origin and a ‘lifted’ energy:

Ĥϕ(x) =
[
− ~

2

2m
∂2

x +
mω2

c

2
(x− xn)2

]
ϕ̃(x) +

[
eExn +

m

2

(
E

B

)2
]

ϕ̃(x), (2.a.5)

=
(
m + 1

2

)
~ωc + eExn +

m

2

(
E

B

)2

. (2.a.6)

If we let ϕm(x) denote the canonical simple harmonic oscillator wave function at level
m, then the eigenenergies (2.a.6) correspond to eigenfunctions

ψm,n(x) = ϕm(x− xn)e−ikny (2.a.7)

where m labels the Landau level and n labels the ŷ-momentum.
Now, the ϕm(x−xn) are Hermite polynomials centred at xn. For a sample with a finite

width W in the x̂-direction, it should be the case that xn lies within the sample.
This implies that

E

Bωc
< kn`2B < W +

E

Bωc
. (2.a.8)

Because this confines kn to a (finite) range of positive values, this agrees with our
choice of signs earlier.

9See the discussion following equation (2.a.7) for an explanation.
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b. Using the wavefunctions found above, we are to determine the total current carried by each
state and compare this to the classical result for a particle undergoing cyclotron motion in perpendicular
E and B fields and to the result obtained by using the semiclassical velocity ~v = 1

~
dε

d~k
.

It is rather straight-forward to compute the current of the wave functions found above.
Indeed, using equation (2.a.7) we find for the x̂-component of the current10

~jx = −evx = − e

m
Re

{
ψ∗m,nΠ̂ψm,n

}
,

= − e

m
Re

{
ϕ∗m(x− xn)e−ikny(−i~)∂xϕm(x− xn)eikny

}
,

= 0

because we can choose the simple harmonic oscillator wave functions ϕm(x) to be
real. The ŷ-component of the current is found similarly,

~jy = − e

m
Re

{
ϕ∗m(x− xn)eikny (−i~∂y + eBx)ϕm(x− xn)e−ikny

}
, (2.b.9)

=
e

m
(~kn − eBx) ϕ2

m(x− xn)ŷ. (2.b.10)

Considering the range of kn allowed, this seems to give a current in the +ŷ-direction,
as we would expect. The minimum value of kn > Em

B~ .
The classical solution to crossed electric and magnetic fields is of course a cycloid. Indeed,

if we consider the trajectory of an individual electron classically, we find it to be

x(t) =
E

ωcB

(
(cos(ωct)− 1), (sin(ωct)− ωct)

)
, (2.b.11)

which gives rise to a net current in the positive ŷ-direction

~j = −e〈ẏ(t)〉 =
E

B
ŷ. (2.b.12)

Semiclassically, we take the derivative of the energy (2.a.6) with respect to −kn to obtain

~j = (−e)
1
~
−~E
eB

=
E

B
ŷ. (2.b.13)

10Recall that the gauge-covariant momentum operator Π = −i~~∇+ e
~

~A.


